用户名
密码
忘了密码
设为主页
收藏本站
广告刊登
首页
|
行业新闻
|
科技前沿
|
技术资料
|
企业大全
|
工程展示
|
工程供需
|
人才中心
|
推荐图书
|
会员中心
|
交流论坛
3-RRRT并联机器人解耦的反演自适应动态滑模控制
资讯类型:科技前沿 加入时间:2009年4月21日15:33
3-RRRT并联机器人解耦的反演自适应动态滑模控制
刘延斌,韩秀英,许晖
(1.河南科技大学机电工程学院,洛阳471003;2.天津理工大学机械工程学院,天津300191;3.中科院长春光机所,长春130033)
摘要:针对3-RRRT型搬运机器人提出一种解耦的反演自适应动态滑模控制方法,以提高控制精度和鲁棒稳定性。首先利用非线性补偿方法将系统解耦成线性系统,运用一阶动态滑模设计新的滑模面,然后利用基于李亚普诺夫函数的Backstepping控制设计方法和自适应控制技术,设计了全局渐近稳定的系统控制器,最后利用MATLAB进行了系统控制数值仿真,结果表明,对3-RRRT型并联机器人的这种强耦合的、具有不确定性的非线性系统,采用该解耦的反演自适应动态滑模控制方法,可以达到理想的控制精度,并能保障系统的鲁棒稳定性。
关键词:并联机器人;解耦控制;动态滑模控制;自适应控制
中图分类号:TH112文献标识码:A文章编号:1004-731X(2008)14-3633-04
引言
并联机器人是一种强耦合的、具有不确定性的非线性系统,因此,对并联机器人的高精度控制策略研究具有很大的难度和挑战性[1],到目前人们已经提出了多种并联机器人的控制方法,如解耦PD控制方法[2]、自适应控制方法、鲁棒控制方法、滑模变结构控制方法等等[3-8],其中解耦PD控制方法是充分利用动力学数学模型,来对并联机器人的惯性耦合、速度耦合和重力干扰进行补偿,但该方法没有考虑到并联机器人系统本身的不确定性和未建模部分,如关节间摩擦、间隙冲击、以及其它的周期性干扰等,因此鲁棒性较差;而后几种控制方法虽然具有一定的鲁棒性,但在并联机器人高速周期性运动的情况下,由于强耦合的影响,其调节能力会显得有些不足,而影响稳定性和控制精度。笔者针对上述控制问题,提出了将动力学解耦和自适应滑模控制理论相结合,并通过基于李亚普诺夫函数的反演控制设计,以获得二者兼顾的理想控制律,并进一步保障系统的鲁棒稳定性。
滑模变结构控制理论日益受到重视和广泛应用,这主要由于滑模动态可以自行设计,与对象参数及扰动无关,就使得这种控制方法具有响应速度快、对参数变化和扰动不灵敏、实现简单等优点,但这种控制方法也有其自身的不足,就是当系统状态到达滑模面后,难于严格地沿滑面向着平衡点滑动,而在滑面两侧来回穿越,从而产生颤动,尤其应用于高速强耦合的运动系统,这种抖振现象难以降低和消除,为此笔者针对系统解耦后剩余的未建模部分,运用一种一阶动态滑模控制方法以降低抖振,再根据李亚普诺夫函数的反演设计方法[9],获得了一种自适应动态滑模控制律,进而保证系统全局的渐近稳定。
根据上述思想,笔者以天津理工大学研制的新型搬运3-RRRT型并联机器人(如图1所示,下文简称并联机器人)为对象,设计一种基于非线性动力学解耦的反演自适应动态滑模控制律,并利用Matlab中的Simulink软件平台进行了控制数值仿真。
4 仿真结果分析
(1)通过比较图4、5与图13、14,比较图7、8与图15、16,比较图10、11与图17、18,可以看出,采用本文所提出的解耦的反演自适应动态滑模控制方法要比采用解耦的PD控制方法所达到的控制精度要高很多,当然如果改变这两种控制律的相应控制参数值,还可以提高各自的控制精度,但相比较来说,后者需要更大的代价,即采取高增益办法,这说明采用前者控制方法可以更容易提高控制精度,更具有鲁棒稳定性。
(2)从三个驱动关节控制输入wi曲线(图6、9、12)可以看出,曲线较平滑,说明采用一阶动态滑模控制方法可以明显降低高频抖振现象。
5 结论
本文在3-RRRT型并联机器人建立了机电系统动力学模型基础上,结合其特点,首先利用非线性补偿方法将系统解耦成线性系统,然后运用一阶动态滑模,设计新的滑模面,利用自适应技术和Backstepping控制设计方法,设计了系统控制器,最后利用Matlab中的Simulink软件进行了数值仿真,仿真结果表明,对于3-RRRT型并联机器人的这种强耦合的、具有不确定性非线性系统,采用该解耦自适应动态滑模控制方法要比采用解耦PD控制方法更容易达到较高精度,而且鲁棒稳定性好,同时运用一阶动态滑模控制方法也明显地降低了滑模控制中的抖振现象。
文章来自:
滑模机械网
文章作者:
信息一部
『
新闻推荐
』
『
关闭窗口
』
网站建设
|
广告刊登
|
汇款说明
E-mail: admin@chinasfm.com
技术支持:
简双工作室
电话:0371-69131532 传真:0371-63942657-8001
版权说明:本站部分文章来自互联网,如有侵权,请与
信息处
联系